Nanoscale iron particles for environmental remediation: An overview

نویسنده

  • Wei-xian Zhang
چکیده

Nanoscale iron particles represent a new generation of environmental remediation technologies that could provide cost-effective solutions to some of the most challenging environmental cleanup problems. Nanoscale iron particles have large surface areas and high surface reactivity. Equally important, they provide enormous flexibility for in situ applications. Research has shown that nanoscale iron particles are very effective for the transformation and detoxification of a wide variety of common environmental contaminants, such as chlorinated organic solvents, organochlorine pesticides, and PCBs. Modified iron nanoparticles, such as catalyzed and supported nanoparticles have been synthesized to further enhance the speed and efficiency of remediation. In this paper, recent developments in both laboratory and pilot studies are assessed, including: (1) synthesis of nanoscale iron particles (10–100 nm, >99.5% Fe) from common precursors such as Fe(II) and Fe(III); (2) reactivity of the nanoparticles towards contaminants in soil and water over extended periods of time (e.g., weeks); (3) field tests validating the injection of nanoparticles into aquifer, and (4) in situ reactions of the nanoparticles in the subsurface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of synthesized nanoscale zero-valent iron in the treatment of dye solution containing Basic Yellow 28

Nanoscale zero-valent iron NZVI particles were synthesized by the aqueous phase borohydride reduction method, and the synthesized NZVI particles were used for the degradation of Basic Yellow 28 BY28 dye in aqueous solution. The influence of experimental variables such as reaction time, NZVI particle dosage and pH were studied on the decolorization of BY28. Mixing an aqueous solution of 100 mg L...

متن کامل

Use of nanoscale zero-valent iron to improve the shear strength parameters of gas oil contaminated clay

In recent years, the nanoscale zero-valent iron (NZVI) particles have been used successfully for the degradation of hydrocarboncompounds and remediation of other pollutants. Nevertheless, as far as we know, there is no specific study on the improvement of thegeotechnical properties of contaminated soils with hydrocarbon compounds by NZVI. This study used NZVI particles to remove gasoil in a cla...

متن کامل

Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

OBJECTIVES Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting res...

متن کامل

Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium.

Nanoscale, zero-valent iron is a promising reagent for in situ reduction of a variety of subsurface contaminants, but its utility in full-scale remediation projects is limited by material costs. Iron nanoparticles (20-100 nm diameter) supported on carbon (C-Fe0) were synthesized by reacting iron salts, adsorbed or impregnated from aqueous solutions onto 80 m2/g carbon black, at 600-800 degrees ...

متن کامل

Nanoscale Metallic Iron for Environmental Remediation: Prospects and Limitations

The amendment of the subsurface with nanoscale metallic iron particles (nano-Fe(0)) has been discussed in the literature as an efficient in situ technology for groundwater remediation. However, the introduction of this technology was controversial and its efficiency has never been univocally established. This unsatisfying situation has motivated this communication whose objective was a comprehe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003